Hero background

Find Pairs of Values

Maths • Year 6 • 45 • 30 students • Created with AI following Aligned with National Curriculum for England

Maths
6Year 6
45
30 students
27 December 2025

Teaching Instructions

This is lesson 9 of 10 in the unit "Algebra Adventures Unlocked". Lesson Title: Find Pairs of Values Lesson Description: In this lesson, students will explore how to find pairs of values that satisfy given equations. They will practice identifying solutions and understanding the concept of ordered pairs in algebra.

Overview

  • Unit: Algebra Adventures Unlocked
  • Lesson: 9 of 10
  • Duration: 45 minutes
  • Class Size: 30 students
  • Year Group: 6
  • Curriculum Reference: Mathematics Program of Study – Key Stage 2, Years 5 & 6
  • Focus: Algebra – understanding and solving simple equations

National Curriculum Links

Mathematics: Key Stage 2 – Years 5 & 6

  • Number – Algebra:
    • Use simple formulae [National Curriculum Ref: Y6-NS3]
    • Generate and describe linear number sequences [NC Ref: Y6-NS4]
    • Express missing number problems algebraically [NC Ref: Y6-NS5]
    • Enumerate possibilities of combinations of two variables [NC Ref: Y6-NS6]

Assessment Focus:

  • Solve problems by finding pairs of values that satisfy an equation.
  • Understand and represent ordered pairs in an algebraic context.

Learning Objectives

By the end of this lesson, students will:

  1. Understand the concept of ordered pairs (x, y) as solutions to equations.
  2. Find pairs of values that satisfy simple algebraic equations (e.g., y = 2x + 1).
  3. Develop strategies to systematically identify pairs of values within given constraints.
  4. Begin to appreciate the connection between algebraic notation and numerical solutions.

Resources Needed

  • Whiteboard and markers
  • A4 graph paper (one per student)
  • Worksheets with equations for practice (e.g., y = 3x, y = x + 5)
  • Pre-prepared sets of number cards (0–10) for group activities
  • Mini whiteboards and pens for all students
  • Projector or visualiser (to model examples and show students' work)

Lesson Structure

1. Starter Activity (5 minutes)

Objective: Activate prior knowledge about coordinates and simple equations.

  • Begin with a quick recall: What is an ordered pair?
  • Use the whiteboard to plot a few points (e.g., (1, 2), (2, 5)) and ask students to identify them.
  • Ask: "If y = 2x, what would be the y-values for x = 1, 2, 3?"
  • Students answer chorally and individually on mini whiteboards.

Curriculum link: Reinforces understanding of coordinates following Y5-NS7 (read and plot points in four quadrants).


2. Direct Teaching & Modelling (10 minutes)

Objective: Introduce finding pairs that satisfy an equation algebraically and visually.

  • Present a simple linear equation on the board: e.g., y = 2x + 1
  • Explain what it means for a pair (x, y) to satisfy this equation.
  • Model step-by-step how to find pairs of values: substitute values for x, calculate y, and write down the ordered pairs.
  • Use a table format on board for x values 0–5:
xy = 2x + 1(x, y)
01(0, 1)
13(1, 3)
25(2, 5)
  • Show how this can also be represented graphically on graph paper.

Curriculum link: Supports Y6-NS3 (Use simple formulae) and Y6-NS6 (Enumerate possibilities for combinations of two variables).


3. Guided Practice (15 minutes)

Objective: Apply understanding by completing tables and finding pairs in groups.

  • Hand out worksheets with 3 different linear equations (e.g., y = x + 4, y = 3x, y = 5 - x).

  • Students work in pairs to fill in tables of x and y values (0–5) and write down pairs.

  • Circulate to assist and challenge with "What if x is negative?" or "Can you find pairs for x = 6?"

  • Use mini whiteboards to share examples; invite pairs to write good examples on the board.

  • Extension challenge:
    Given a pair (x, y), check if it satisfies the equation. For example, does (3, 10) satisfy y = 3x + 1?

Curriculum link: Algebraic problem solving and substitution as per NC Year 6 requirements.


4. Activity: Pair Matching Game (10 minutes)

Objective: Deepen understanding through a kinaesthetic learning approach.

  • In groups of 5, use number cards labelled 0–10 for x and y values.
  • Teacher reads out an equation, for example, y = 2x - 1.
  • Groups must find all card pairings (x, y) that satisfy it, physically pairing cards and arranging them in order on the desk.
  • First group to correctly find all 6 pairs for x values 0 to 5 wins a small reward.
  • Recap with the whole class by asking groups to share their pairs and reasoning.

Curriculum connection: Consolidates enumeration of possibilities and visualisation of solutions (Y6-NS6).


5. Plenary & Assessment (5 minutes)

Objective: Evaluate understanding and consolidate learning through questioning and reflection.

  • Quick exit quiz on mini whiteboards: Given y = x + 2, write down three pairs of values.
  • Ask students to explain why these pairs work and what an ordered pair means.
  • Use thumbs up/down to gauge confidence on today’s learning objectives.
  • Collect worksheets to assess individual progress.

Differentiation

  • Support: Provide ready-made tables with partially filled values, visual aids for pairing, and sentence starters for explaining answers.
  • Challenge: Encourage finding pairs with negative x-values and real-life context problems (e.g., number of wheels on bikes vs number of bikes).
  • EAL/SEN: Pre-teach key vocabulary (ordered pair, satisfy, variable, equation), use visual representations constantly.

Assessment for Learning

  • Monitor paired work and discussions for misconceptions (e.g., confusing x and y or incorrect substitution).
  • Evaluate partnership worksheets for accuracy in pairs found.
  • Use exit quiz and plenary responses to evaluate individual confidence and conceptual understanding.

Homework Suggestion

  • Choose an equation (provided or student-created) and find 5 pairs of values. Draw these on graph paper, label the pairs, and write a sentence explaining how you know they satisfy the equation.

Reflection Notes for Teacher

  • Students tend to confuse the components of pairs; extra emphasis on (x, y) order is critical.
  • Use of games and kinaesthetic activity elevated engagement noticeably.
  • Consider digital tools (like simple graphing calculators or apps) for next lesson to extend learning further.

This lesson plan carefully aligns with the England National Curriculum for Mathematics at Year 6 and incorporates varied teaching methods to ensure deep conceptual understanding and engagement.

Create Your Own AI Lesson Plan

Join thousands of teachers using Kuraplan AI to create personalized lesson plans that align with Aligned with National Curriculum for England in minutes, not hours.

AI-powered lesson creation
Curriculum-aligned content
Ready in minutes

Created with Kuraplan AI

Generated using gpt-4.1-mini-2025-04-14

🌟 Trusted by 1000+ Schools

Join educators across United Kingdom